121 research outputs found

    Quantum point contact on graphite surface

    Get PDF
    The conductance through a quantum point contact created by a sharp and hard metal tip on the graphite surface has features which to our knowledge have not been encountered so far in metal contacts or in nanowires. In this paper we first investigate these features which emerge from the strongly directional bonding and electronic structure of graphite, and provide a theoretical understanding for the electronic conduction through quantum point contacts. Our study involves the molecular-dynamics simulations to reveal the variation of interlayer distances and atomic structure at the proximity of the contact that evolves by the tip pressing toward the surface. The effects of the elastic deformation on the electronic structure, state density at the Fermi level, and crystal potential are analyzed by performing self-consistent-field pseudopotential calculations within the local-density approximation. It is found that the metallicity of graphite increases under the uniaxial compressive strain perpendicular to the basal plane. The quantum point contact is modeled by a constriction with a realistic potential. The conductance is calculated by representing the current transporting states in Laue representation, and the variation of conductance with the evolution of contact is explained by taking the characteristic features of graphite into account. It is shown that the sequential puncturing of the layers characterizes the conductance.Comment: LaTeX, 11 pages, 9 figures (included), to be published in Phys. Rev. B, tentatively scheduled for 15 September 1998 (Volume 58, Number 12

    Gravitational waves in the presence of a cosmological constant

    Get PDF
    We derive the effects of a non-zero cosmological constant Λ\Lambda on gravitational wave propagation in the linearized approximation of general relativity. In this approximation we consider the situation where the metric can be written as gμν=ημν+hμνΛ+hμνWg_{\mu\nu}= \eta_{\mu\nu}+ h_{\mu\nu}^\Lambda + h_{\mu\nu}^W, hμνΛ,W<<1h_{\mu\nu}^{\Lambda,W}<< 1, where hμνΛh_{\mu\nu}^{\Lambda} is the background perturbation and hμνWh_{\mu\nu}^{W} is a modification interpretable as a gravitational wave. For Λ0\Lambda \neq 0 this linearization of Einstein equations is self-consistent only in certain coordinate systems. The cosmological Friedmann-Robertson-Walker coordinates do not belong to this class and the derived linearized solutions have to be reinterpreted in a coordinate system that is homogeneous and isotropic to make contact with observations. Plane waves in the linear theory acquire modifications of order Λ\sqrt{\Lambda}, both in the amplitude and the phase, when considered in FRW coordinates. In the linearization process for hμνh_{\mu\nu}, we have also included terms of order O(Λhμν)\mathcal{O}(\Lambda h_{\mu\nu}). For the background perturbation hμνΛh_{\mu\nu}^\Lambda the difference is very small but when the term hμνWΛh_{\mu\nu}^{W}\Lambda is retained the equations of motion can be interpreted as describing massive spin-2 particles. However, the extra degrees of freedom can be approximately gauged away, coupling to matter sources with a strength proportional to the cosmological constant itself. Finally we discuss the viability of detecting the modifications caused by the cosmological constant on the amplitude and phase of gravitational waves. In some cases the distortion with respect to gravitational waves propagating in Minkowski space-time is considerable. The effect of Λ\Lambda could have a detectable impact on pulsar timing arrays.Comment: 20 pages, 1 figur

    Integrating Values, Purposes, and Visions for Responsible Development

    Get PDF
    This chapter highlights a study showing that knowledge sharing and envisioning processes can have positive effects on human and social capital growth within a network. The chapter begins by arguing that a responsible development perspective can be more proactive approach than a sustainability perspective. Some actors (non-profit, public, and private) have achieved responsible development goals by integrating values, purposes and visions. More specifically, we conducted a study testing a methodology that can guide a process of building a strategic vision within a network with the goal of improving their responsible development orientation. The chosen methodology is “Participatory Action Research”. The implementation of the envisioning process was studied via quantitative/qualitative research tools. The methodology was tested in an official cross-country project funded by the European Commission. The project was selected as a best practice by the same European Union Commission. The study highlights the importance of envisioning processes in building social and human capital at the inter-organizational level and, in particular, in highly complex sectors such as those oriented towards improving social responsibility. In fact, work on the envisioning process itself represents an essential instrument for developing strategic objectives to be shared among actors within networks that intend to promote responsible development and improve their human and social capital. This bottom-up process of envisioning can also facilitate cultural interaction among community members, even in a cross-country context. This relevant “learning-by-interacting” experience, can create a growth process for the human and social capital of entire communities. The creation of social capital also promotes the development of shared knowledge and advances leading to the general understanding of common core objectives and appropriate ways of acting within the social system. The chapter ends with recommendations for future research

    Urinary amine and organic acid metabolites evaluated as markers for childhood aggression : the ACTION biomarker study

    Get PDF
    Biomarkers are of interest as potential diagnostic and predictive instruments in personalized medicine. We present the first urinary metabolomics biomarker study of childhood aggression. We aim to examine the association of urinary metabolites and neurotransmitter ratios involved in key metabolic and neurotransmitter pathways in a large cohort of twins (N = 1,347) and clinic-referred children (N = 183) with an average age of 9.7 years. This study is part of ACTION (Aggression in Children: Unraveling gene-environment interplay to inform Treatment and InterventiON strategies), in which we developed a standardized protocol for large-scale collection of urine samples in children. Our analytical design consisted of three phases: a discovery phase in twins scoring low or high on aggression (N = 783); a replication phase in twin pairs discordant for aggression (N = 378); and a validation phase in clinical cases and matched twin controls (N = 367). In the discovery phase, 6 biomarkers were significantly associated with childhood aggression, of which the association of O-phosphoserine (beta = 0.36; SE = 0.09; p = 0.004), and gamma-L-glutamyl-L-alanine (beta = 0.32; SE = 0.09; p = 0.01) remained significant after multiple testing. Although non-significant, the directions of effect were congruent between the discovery and replication analyses for six biomarkers and two neurotransmitter ratios and the concentrations of 6 amines differed between low and high aggressive twins. In the validation analyses, the top biomarkers and neurotransmitter ratios, with congruent directions of effect, showed no significant associations with childhood aggression. We find suggestive evidence for associations of childhood aggression with metabolic dysregulation of neurotransmission, oxidative stress, and energy metabolism. Although replication is required, our findings provide starting points to investigate causal and pleiotropic effects of these dysregulations on childhood aggression

    Integrative multi-omics analysis of childhood aggressive behavior

    Get PDF
    This study introduces and illustrates the potential of an integrated multi-omics approach in investigating the underlying biology of complex traits such as childhood aggressive behavior. In 645 twins (cases = 42%), we trained single- and integrative multi-omics models to identify biomarkers for subclinical aggression and investigated the connections among these biomarkers. Our data comprised transmitted and two non-transmitted polygenic scores (PGSs) for 15 traits, 78,772 CpGs, and 90 metabolites. The single-omics models selected 31 PGSs, 1614 CpGs, and 90 metabolites, and the multi-omics model comprised 44 PGSs, 746 CpGs, and 90 metabolites. The predictive accuracy for these models in the test (N = 277, cases = 42%) and independent clinical data (N = 142, cases = 45%) ranged from 43 to 57%. We observed strong connections between DNA methylation, amino acids, and parental non-transmitted PGSs for ADHD, Autism Spectrum Disorder, intelligence, smoking initiation, and self-reported health. Aggression-related omics traits link to known and novel risk factors, including inflammation, carcinogens, and smoking.Analytical BioScience

    Joint Europa Mission (JEM): a multi-scale study of Europa to characterize its habitability and search for extant life

    Get PDF
    Europa is the closest and probably the most promising target to search for extant life in the Solar System, based on complementary evidence that it may fulfil the key criteria for habitability: the Galileo discovery of a sub-surface ocean; the many indications that the ice shell is active and may be partly permeable to transfer of chemical species, biomolecules and elementary forms of life; the identification of candidate thermal and chemical energy sources necessary to drive a metabolic activity near the ocean floor. In this article we are proposing that ESA collaborates with NASA to design and fly jointly an ambitious and exciting planetary mission, which we call the Joint Europa Mission (JEM), to reach two objectives: perform a full characterization of Europa's habitability with the capabilities of a Europa orbiter, and search for bio-signatures in the environment of Europa (surface, subsurface and exosphere) by the combination of an orbiter and a lander. JEM can build on the advanced understanding of this system which the missions preceding JEM will provide: Juno, JUICE and Europa Clipper, and on the Europa lander concept currently designed by NASA (Maize, report to OPAG, 2019). We propose the following overarching goals for our Joint Europa Mission (JEM): Understand Europa as a complex system responding to Jupiter system forcing, characterize the habitability of its potential biosphere, and search for life at its surface and in its sub-surface and exosphere. We address these goals by a combination of five Priority Scientific Objectives, each with focused measurement objectives providing detailed constraints on the science payloads and on the platforms used by the mission. The JEM observation strategy will combine three types of scientific measurement sequences: measurements on a high-latitude, low-altitude Europan orbit; in-situ measurements to be performed at the surface, using a soft lander; and measurements during the final descent to Europa's surface. The implementation of these three observation sequences will rest on the combination of two science platforms: a soft lander to perform all scientific measurements at the surface and sub-surface at a selected landing site, and an orbiter to perform the orbital survey and descent sequences. We describe a science payload for the lander and orbiter that will meet our science objectives. We propose an innovative distribution of roles for NASA and ESA; while NASA would provide an SLS launcher, the lander stack and most of the mission operations, ESA would provide the carrier-orbiter-relay platform and a stand-alone astrobiology module for the characterization of life at Europa's surface: the Astrobiology Wet Laboratory (AWL). Following this approach, JEM will be a major exciting joint venture to the outer Solar System of NASA and ESA, working together toward one of the most exciting scientific endeavours of the 21st century: to search for life beyond our own planet
    corecore